
Elliptic Curves

a Hardware Perspective
Joppe W. Bos

NIST Workshop on Elliptic Curve Cryptography Standards
June 11- June 12 2015, Gaithersburg, MD, USA

We all want fast, high security, affordable and easy-to-use elliptic curves for cryptography.

 How to choose them? (Does a truly rigid curve selection even exist?)

 Do we need different curves for different applications due to different security models?

This talk: A hardware perspective on selecting cryptographic elliptic curves

Motivation

We all want fast, high security, affordable and easy-to-use elliptic curves for cryptography.

 How to choose them? (Does a truly rigid curve selection even exist?)

 Do we need different curves for different applications due to different security models?

This talk: A hardware perspective on selecting cryptographic elliptic curves

I try to comment on these often heard phrases about hardware implementations

• Why should we care about hardware considerations?

• Hardware implementations just communicate to each other in a closed environment.

• There is much more usage of ECC in software than hardware,

so software requirements are much more important!

• If the new curves are fast in software they are also fast in hardware, right?

Motivation

1985-
1987

• Koblitz and Miller: elliptic curves in cryptography

2000

• Certicom: First curve standard Standards for Efficient Cryptography

• NIST: FIPS 186-2 Digital Signature Standard

2005
• ECC Brainpool: Standard Curves and Curve Generation

2006
• D. J. Bernstein: Curve25519 (128-bit security only)

2013

• New York Times (related to Dual EC-DRBG):
"the National Security Agency had written the standard and could break it"

Elliptic Curves in Cryptography

We see an increase in support for ECC in software, for example

 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”

 Around 5 million hosts support ECC in TLS / SSH

 Many TLS servers prefer ciphersuites with ECDHE

Elliptic Curves and Hardware

We see an increase in support for ECC in software, for example

 2013 scan observed: “about 1 in 10 systems support ECC across the TLS and SSH protocols”

 Around 5 million hosts support ECC in TLS / SSH

 Many TLS servers prefer ciphersuites with ECDHE

Hardware ECC

 Currently, ECC coprocessors are used

 in billions of smart cards securing ID cards, passports and banking

 for 15 years in devices supporting the Digital Transmission Content Protection system

(Short-term) future: Internet-of-Things, prediction

 5 billion things at the end of 2015

 25 billion things around 2020

• For asymmetric crypto, ECC is the logical choice: small keys, fast on embedded platforms, etc

• Many “things” need to communicate securely with user-apps and possibly the world wide web

• Hardware and software implementation will start to talk to each other (more frequently)!

Elliptic Curves and Hardware

In both environments we want efficient and secure implementations!

However, the settings are quite different:

 Implementation strategy / algorithm selection
• Software optimizations mainly focus on improved performance

(performance, performance, performance!)

• In hardware: size matters

(area size, number of registers, memory requirement)

Software and Hardware Perspective

In both environments we want efficient and secure implementations!

However, the settings are quite different:

 Implementation strategy / algorithm selection
• Software optimizations mainly focus on improved performance

(performance, performance, performance!)

• In hardware: size matters

(area size, number of registers, memory requirement)

 Maintainability
• Patching / upgrading deployed software is relatively cheap and easy (but still a pain!)

• Patching / upgrading deployed hardware is expensive in terms of effort and money

Software and Hardware Perspective

In both environments we want efficient and secure implementations!

However, the settings are quite different:

 Implementation strategy / algorithm selection
• Software optimizations mainly focus on improved performance

(performance, performance, performance!)

• In hardware: size matters

(area size, number of registers, memory requirement)

 Maintainability
• Patching / upgrading deployed software is relatively cheap and easy (but still a pain!)

• Patching / upgrading deployed hardware is expensive in terms of effort and money

 Security model
• Software security model: susceptible to mainly

timing attacks and cache attacks

• Hardware security model: susceptible to

fault injections, simple power analysis, differential power analysis, correlation power analysis,

template attacks, higher-order correlation attacks, mutual information analysis, linear regression

analysis, horizontal analysis, vertical analysis etc.

Software and Hardware Perspective

Montgomery curves

𝐵𝑦2 = 𝑥3 + 𝐴𝑥2 + 𝑥

• Subset of curves

• [-] Not prime order

• [+] Montgomery ladder

Twisted Edwards
curves

𝑎𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2

• Subset of curves

• [-] Not prime order

• [+] Fastest arithmetic

• [+] Some
have
complete
group law

Weierstrass curves

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

• Most general form

• [+] Prime order possible

• [-] Exceptions in group law

• NIST and
Brainpool curves

Elliptic Curves

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve

“One curve model to rule them all”

 Implement group law, counter measures etc. once.

 If new curves are proposed no need to change implementation.

Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve

“One curve model to rule them all”

 Implement group law, counter measures etc. once.

 If new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume
• prime order [almost always assumed]

• short Weierstrass curves [always assumed]

• with curve parameter a = −3 [not widely assumed?]

Backwards compatibility

Implementing arithmetic on (short) Weierstrass curves makes a lot of sense.

Given a curve in another curve model one can always translate this to an equivalent Weierstrass curve

“One curve model to rule them all”

 Implement group law, counter measures etc. once.

 If new curves are proposed no need to change implementation.

Existing hardware / software implementations might assume
• prime order [almost always assumed]

• short Weierstrass curves [always assumed]

• with curve parameter a = −3 [not widely assumed?]

Historically this makes sense:

Standard curves 𝐸(𝐅𝑝) with 𝑝>3 prime have these three properties

For instance see:

o NIST, FIPS 186-4, App. D: Recommended Elliptic Curves for Government Use

o SEC 2: Recommended Elliptic Curve Domain Parameters*

(* Except the three Koblitz curves secp192k1, secp224k1, secp256k1, where 𝑎 = 0)

Backwards compatibility

Existing hardware / software implementations might assume
• prime order [almost always assumed]

 This rules out (twisted) Edwards / Montgomery curves

 Need additional code to avoid small-subgroup attacks

• short Weierstrass curves [always assumed]

One curve model to rule them all: not a problem

• with curve parameter a = −3 [not widely assumed?]

Backwards compatibility

Existing hardware / software implementations might assume
• prime order [almost always assumed]

 This rules out (twisted) Edwards / Montgomery curves

 Need additional code to avoid small-subgroup attacks

• short Weierstrass curves [always assumed]

One curve model to rule them all: not a problem

• with curve parameter a = −3 [not widely assumed?]

One can transform

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 to an isomorphic 𝑦2 = 𝑥3 − 3𝑥 + 𝑏′

if and only if there exists 𝑢 ∈ 𝐅𝑝
∗ such that 𝑢4 = 𝑎/−3 and 𝑢6 = 𝑏/𝑏′

Backwards compatibility

Existing hardware / software implementations might assume
• prime order [almost always assumed]

 This rules out (twisted) Edwards / Montgomery curves

 Need additional code to avoid small-subgroup attacks

• short Weierstrass curves [always assumed]

One curve model to rule them all: not a problem

• with curve parameter a = −3 [not widely assumed?]

One can transform

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 to an isomorphic 𝑦2 = 𝑥3 − 3𝑥 + 𝑏′

if and only if there exists 𝑢 ∈ 𝐅𝑝
∗ such that 𝑢4 = 𝑎/−3 and 𝑢6 = 𝑏/𝑏′

Example: Such a 𝑢 does not exist for
curve25519 → no isomorphic 𝑎 = −3
short Weierstrass curve.

Have to use isogenies instead:

 more complexity

 what is the degree of this isogeny?

Backwards compatibility

Existing hardware / software implementations might assume
• prime order [almost always assumed]

 This rules out (twisted) Edwards / Montgomery curves

 Need additional code to avoid small-subgroup attacks

• short Weierstrass curves [always assumed]

One curve model to rule them all: not a problem

• with curve parameter a = −3 [not widely assumed?]

One can transform

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 to an isomorphic 𝑦2 = 𝑥3 − 3𝑥 + 𝑏′

if and only if there exists 𝑢 ∈ 𝐅𝑝
∗ such that 𝑢4 = 𝑎/−3 and 𝑢6 = 𝑏/𝑏′

Preference: prime-order curves

Example: Such a 𝑢 does not exist for
curve25519 → no isomorphic 𝑎 = −3
short Weierstrass curve.

Have to use isogenies instead:

 more complexity

 what is the degree of this isogeny?

Backwards compatibility

Assumption
When executing a cryptographic operation on a particular hardware device, the power consumption at a

certain state depends on the (secret) data involved and some random noise

Simple power analysis: deduce the secret key by visual examination of the graph of the current over time

(a large family of software timing attacks can be seen as SPA)

Correlation power analysis: correlate the power consumption to the bits of the secret key

Side Channel Attacks I

Assumption
When executing a cryptographic operation on a particular hardware device, the power consumption at a

certain state depends on the (secret) data involved and some random noise

Simple power analysis: deduce the secret key by visual examination of the graph of the current over time

(a large family of software timing attacks can be seen as SPA)

Correlation power analysis: correlate the power consumption to the bits of the secret key

Setting ECDH, well-known countermeasure: randomize input point

1) Use isomorphic curve

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 → 𝑦2 = 𝑥3 + 𝑎𝑢4𝑥 + 𝑏𝑢6

𝑥, 𝑦 → (𝑢2𝑥, 𝑢3𝑦)

2) Use projective coordinates

For example, Jacobian coordinates, use non-zero 𝑟 such that

(𝑋: 𝑌: 𝑍) → (𝑟2𝑋: 𝑟3𝑌: 𝑟𝑍)

Side Channel Attacks I

However, Goubin’s attack (zero-coordinate) + [Akishita, Takagi]’s attack (zero-value) apply

Idea, focus on points with a zero coordinate Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Side Channel Attacks II

However, Goubin’s attack (zero-coordinate) + [Akishita, Takagi]’s attack (zero-value) apply

Idea, focus on points with a zero coordinate

Preference
When proposing new curves take already known side-channel attacks and weaknesses into consideration

Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Side Channel Attacks II

However, Goubin’s attack (zero-coordinate) + [Akishita, Takagi]’s attack (zero-value) apply

Idea, focus on points with a zero coordinate

Preference
When proposing new curves take already known side-channel attacks and weaknesses into consideration

Weierstrass Twisted Edwards

(𝑥, 0), point of order 2 (0,1), 1-torsion

(0,± 𝑏) (0,−1), 2-torsion

(± 𝑎−1, 0), 4-torsion

Example: curve25519 can be written as the Weierstrass curve

y^2 = x^3 - 236839902241/3 x + 230521961007359098/27

(0,± 230521961007359098/27) is a valid point and has full order

Side Channel Attacks II

These attack ideas carry over to the modular multiplication level as well.

• Typical hardware approach:

generic hardware multiplier + generic modular reduction

• Typical software approach:

specialized reduction routine tailored for a specific “special” prime (performance)

Example of special primes:

 Specialized hardware reduction routines → more gates

 Not uncommon to have special hardware for multiplication (re-usage for other components)

→ integer multiplication-only hardware routines amplify zero-value attacks on the finite-field layer.

𝑝255 = 2255 − 19
𝑝256 = 2256 − 2224 + 2192 + 296 − 1

𝑝521 = 2521 − 1

Side Channel Attacks: Special Primes

Other popular countermeasure: additive scalar blinding

Idea

Add a small random multiple of the group order 𝑛 to the scalar 𝑑
𝑑′ = 𝑑 + 𝑟 ∙ 𝑛

• Problematic with such special primes since the Hasse bound states that

| #𝐸 𝐅𝑝 − 𝑝 + 1 | ≤ 2 𝑝

Side Channel Attacks: Special Primes

Other popular countermeasure: additive scalar blinding

Idea

Add a small random multiple of the group order 𝑛 to the scalar 𝑑
𝑑′ = 𝑑 + 𝑟 ∙ 𝑛

• Problematic with such special primes since the Hasse bound states that

| #𝐸 𝐅𝑝 − 𝑝 + 1 | ≤ 2 𝑝

Side Channel Attacks: Special Primes

Example: Curve25519

Prime subgroup order 𝑛 = 2252 + 𝑐 such that 𝟐𝟐𝟓𝟐 + 𝟐𝟏𝟐𝟒 < 𝒏 < 𝟐𝟐𝟓𝟐 + 𝟐𝟏𝟐𝟓.

If 𝑟 < 232 then the least significant 125 + 32 = 157 bits are blinded,

the 95 most significant bits of 𝑑 can be directly extracted from 𝑑′

Other popular countermeasure: additive scalar blinding

Idea

Add a small random multiple of the group order 𝑛 to the scalar 𝑑
𝑑′ = 𝑑 + 𝑟 ∙ 𝑛

• Problematic with such special primes since the Hasse bound states that

| #𝐸 𝐅𝑝 − 𝑝 + 1 | ≤ 2 𝑝

Preference: Use randomly generated primes

Side Channel Attacks: Special Primes

• Usage of special primes reduces the number of available countermeasure techniques

Example: Curve25519

Prime subgroup order 𝑛 = 2252 + 𝑐 such that 𝟐𝟐𝟓𝟐 + 𝟐𝟏𝟐𝟒 < 𝒏 < 𝟐𝟐𝟓𝟐 + 𝟐𝟏𝟐𝟓.

If 𝑟 < 232 then the least significant 125 + 32 = 157 bits are blinded,

the 95 most significant bits of 𝑑 can be directly extracted from 𝑑′

Some current curve proposals suggest to use

• sometimes the Montgomery curve for ECDH

• twisted Edwards for ECDSA

 Adding HW support in the near future for Montgomery and (twisted) Edwards curves is not

realistic

 Supporting non-prime order curves (Montgomery / (twisted) Edwards) in their Weierstrass

form requires adding code complexity to avoid small-subgroup attacks

 There are billions of HW devices and in the future billions of more “things” that will support

ECC

 These implementations (will) interact with software implementations, user-apps and the

world-wide-web

 We should select curves which make it easier to be secure in this security model

Conclusions

Our preferences when selecting new elliptic curves for cryptography

(from a HW perspective)

1) prime-order curves

2) take already known side-channel attacks and weaknesses into consideration

3) use randomly generated primes (but how to generate these primes?1)

4) twist security (nice feature to have)

Conclusions

Both in software and in hardware we want efficient and secure implementations!

1
A. K. Lenstra and B. Wesolowski: A random zoo: sloth, unicorn, and trx. Cryptology ePrint Archive: Report 2015/366

